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Resource Allocation for Cell-free Massive
MIMO-enabled URLLC Downlink Systems

Qihao Peng, Hong Ren, Cunhua Pan, Nan Liu, and Maged Elkashlan

Abstract—Ultra-reliable and low-latency communication
(URLLC) is a pivotal technique for enabling the wireless
control over industrial Internet-of-Things (IIoT) devices. By
deploying distributed access points (APs), cell-free massive
multiple-input and multiple-output (CF mMIMO) has great
potential to provide URLLC services for IIoT devices. In
this paper, we investigate CF mMIMO-enabled URLLC in a
smart factory. Lower bounds (LBs) of downlink ergodic data
rate under finite channel blocklength (FCBL) with imperfect
channel state information (CSI) are derived for maximum-ratio
transmission (MRT), full-pilot zero-forcing (FZF), and local
zero-forcing (LZF) precoding schemes. Meanwhile, the weighted
sum rate is maximized by jointly optimizing the pilot power and
transmission power based on the derived LBs. Specifically, we
first provide the globally optimal solution of the pilot power, and
then introduce some approximations to transform the original
problems into a series of subproblems, which can be expressed
in a geometric programming (GP) form that can be readily
solved. Finally, an iterative algorithm is proposed to optimize
the power allocation based on various precoding schemes.
Simulation results demonstrate that the proposed algorithm
is superior to the existing algorithms, and that the quality of
URLLC services will benefit by deploying more APs, except for
the FZF precoding scheme.

Index Terms—Cell-free massive MIMO, URLLC, Industrial
Internet-of-Things (IIoT).

I. INTRODUCTION

Ultra-Reliable Low-Latency Communication (URLLC) is
one of the crucial techniques in the next generation industrial
systems, which can support the mission-critical communi-
cation for industrial Internet-of-Things (IIOT) devices such
as autonomous vehicles and robots [1], [2]. For industrial
applications, the control command data packet size is gen-
erally small with the stringent requirements of low latency
(1 ms) and low block error rate below 10−6 [3]. Since the
blocklength no longer tends to be infinite, the impact of the
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decoding error probability (DEP) should be considered. To
investigate the coding rate in the short packet regime, the
authors of [4] derived the approximated achievable data rate
under finite channel blocklength (FCBL), which was expressed
in a complex function of the channel blocklength and DEP [5].
However, the achievable data rate expression is neither convex
nor concave with respect to channel blocklength and signal-
to-noise ratio (SNR) [6], which is challenging for resource
allocation.

Recently, there are some contributions on resource alloca-
tion based on short packet transmission [7]–[9]. By deploying
an unmanned aerial vehicle (UAV) as a relay, the short packet
can be delivered to an obstructed device by optimizing UAV’s
location and channel blocklength [7]. The joint optimization
on power allocation and blocklength was studied in [8].
The overall DEP was minimized by optimizing the power
allocation in non-orthogonal multiple access (NOMA) systems
[9]. However, all the above studies [7]–[9] only considered
a simple scenario with point-to-point link, while a smart
industry needs to provide URLLC services for a large number
of devices [10]. To support multiple devices, the orthogonal
frequency division multiple access (OFDMA) technique was
adopted in [11], and the authors therein aimed to minimize
the total bandwidth by optimizing the subchannel allocation.
However, the frequency resource in IIoT applications is limited
[12] and the OFDMA technique is not effective for supporting
an excessive number of devices.

Owing to a large number of available spatial degrees of free-
dom, massive multiple-input and multiple-output (mMIMO)
can simultaneously support multiple devices by using the same
time-frequency resources [13], [14], and thus the mMIMO-
enabled URLLC has attracted extensive research attention
[15]–[19]. The pilot length was optimized to minimize the
DEP in [15], and the authors also analyzed the relationship
between the latency and the DEP in mMIMO systems. Then,
Zeng et al. extended the results in [15] to mMIMO systems
with shadow fading, demonstrating that mMIMO can provide
URLLC services for multiple devices even suffering from
severe shadow fading [16]. The optimal secure performance
was obtained by optimizing the channel blocklength and trans-
mission bits per packet in [17]. The pilot power and payload
power was jointly optimized to maximize the weighted sum
rate of multiple devices in a single cell [18]. The authors
of [19] considered a more general scenario of multiple cells
with imperfect channel state information (CSI) and pilot
contamination, and showed that the pilot contamination had
a significant impact on the reliability of URLLC services.
Although it has been shown that mMIMO can provide URLLC
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services for multiple devices, it may be unable to provide
guaranteed URLLC services to all devices in the cell due to
blockage issue and severe inter-cell interference. Therefore,
a novel network architecture should be developed to support
URLLC services.

By geographically deploying distributed APs, cell-free
mMIMO (CF mMIMO) can provide uniform services for
all devices [20]–[22]. The performance improvements of
CF MIMO systems over the centralized mMIMO systems
have been shown when using maximum ratio transmission
(MRT) precoding scheme [23] and zero forcing (ZF) pre-
coding scheme [24], respectively. Considering that the pre-
vious precoding schemes may no longer be applicable for
CF mMIMO, the authors of [25] proposed four precoding
schemes, namely, full-pilot zero-forcing (FZF), local partial
zero-forcing precoding, local protective partial zero-forcing,
and local regularized zero-forcing. The energy efficiency of
CF mMIMO was analyzed in [26]. The aforementioned works
in [20]–[25] assumed that the APs can acquire the CSI of
all devices, which is theoretically possible but impractical.
To address this issues, a user-centric approach was proposed
to reduce the implementation complexity [27]. The coverage
probability with various densities of APs was analyzed in
[28]. To tackle the blockage issue, the performance of the
reconfigurable intelligent surface-aided CF mMIMO system
was analyzed in [29]. However, all works were based on
the assumption of infinite channel blocklength, which is not
suitable for short packet transmission.

Due to the appealing advantages of CF mMIMO, it has
great potential to provide URLLC services for multiple devices
simultaneously in a large coverage area. Essentially, there was
a significant improvement in terms of the network’s availability
over the centralized mMIMO [30]. The power allocation
based on FCBL for maximizing the minimal data rate and
maximizing the energy efficiency was considered in [31],
where each AP was equipped with a single antenna. However,
channel hardening can only be achieved by deploying ultra-
high density of single-antenna APs [32], which is theoretically
possible but practically unrealistic due to the expensive hard-
ware. In this paper, we investigate the deployment of multiple-
antenna APs and optimal AP selection under the short packet
regime. Then, we aim to maximize the weighted sum rate
based on FCBL while considering the minimal requirements
of DEP and data rate, by optimizing the pilot power and the
transmission power. The main contributions of this paper are
summarized as follows.

1) By using the user-centric approach, we derive the lower
bounds (LBs) of the achievable downlink data rate with
imperfect CSI for the MRT, FZF, and local zero-forcing
(LZF) precoding schemes when using FCBL.

2) The weighted sum rate is maximized by jointly op-
timizing the pilot power and the transmission power
while considering the minimal requirements of DEP
and data rate. To solve this NP-hard problem, we first
transform the DEP and data rate requirements into
the required SINR, and then reducing the number of
variables by proving that the globally optimal solution of
pilot power can be derived in closed form. Furthermore,

Fig. 1: Smart factory scenario where CF mMIMO serves
multiple devices.

by introducing the approximations, the problem can
be simplified into a series of subproblems, which can
be transformed into a geometric programming (GP)
problem by using log-function method and successive
convex approximation (SCA) [33], [34]. Finally, an
iterative algorithm is proposed to solve this problem for
three linear precoding schemes.

3) Simulation results demonstrate the rapid convergence
speed of our proposed algorithms, and also validate the
effectiveness of our method over the existing algorithm.
Besides, by accessing various APs, the optimal AP
selection strategy based on short packet transmission is
provided. More importantly, the CF mMIMO system
has a remarkable performance improvement over the
centralized mMIMO system.

The remainder of this paper is organized as follows. In
Section II, the system model is provided, and then the LB
date rate expression under FCBL based on statistical CSI
is derived for the MRT, FZF, and LZF precoding schemes,
respectively. In Section III, the power allocation is optimized
to maximize the ergodic sum data rate. Then, simulation
results are presented in Section IV. Finally, the conclusions
are drawn in Section V.

Notation: The superscripts (·)∗, (·)T , (·)H stand for the
conjugate, transpose, and conjugate-transpose, respectively.
The Euclidean norm and the expectation operator are denoted
by || · || and E {·}, respectively. z ∼ CN (0, 1) denotes a
circularly symmetric complex Gaussian random variable (RV)
z with zero mean and unit variance, and z ∼ CN (0, IN )
means an N -dimensional complex vector, each element of
which is independent and follows the distribution of CN (0, 1).
Finally, A ∈ CM×N means that A is a complex matrix with
M rows and N columns.

II. SYSTEM MODEL AND SPECTRAL EFFICIENCY

A. System Model

We consider a CF mMIMO-enabled smart factory where
M APs equipped with N antennas jointly serve all K single-
antenna devices, as illustrated in Fig. 1. The channel vector
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gm,k ∈ CN×1 between the mth AP and the kth device is
modeled as

gm,k =
√
βm,khm,k, (1)

where βm,k is the large-scale fading and hm,k ∼ CN (0, IN )
denotes a normal distribution with zero mean and variance of
IN .

B. Uplink Training

It is assumed that each AP needs to estimate the CSI from
all the devices based on time division duplex (TDD) protocol
within the limited channel blocklength L = B×TB , where B
is the bandwidth and TB is the transmission duration. In order
to distinguish the channels from different devices, K devices
are allocated with orthogonal pilot sequences. Then, the mth
AP estimates the channel matrix based on the received pilot
signal Yp

m ∈ CN×K , which is given by

Yp
m =

K∑
k=1

gm,k

√
Kppkq

H
k +Np

m, (2)

where ppk is the pilot power of the kth device, qk ∈ CK×1

is the kth device’s pilot sequence, and Np
m ∈ CN×K is the

additive Gaussian noise matrix at the mth AP, each element of
which is independent and follows the distribution of CN (0, 1).
By multiplying (2) with orthogonal pilot qk, we have

ŷp
m,k =

1√
Kppk

Yp
mqk = gm,k + np

m,k, (3)

where np
m,k = 1√

Kpp
k

Np
mqk. Based on (3), the estimated

channel vector ĝm,k by using minimum mean-square error
(MMSE) is

ĝm,k =
Kppkβm,k

Kppkβm,k + 1
ŷp
m,k, (4)

which follows the distribution of CN (0, λm,kIN ) with λm,k

given by

λm,k =
Kppk(βm,k)

2

Kppkβm,k + 1
. (5)

Then, let us denote g̃m,k = gm,k − ĝm,k as the channel
estimation error, which is independent of ĝm,k and follows
the distribution of CN (0, (βm,k − λm,k) IN ).

C. Downlink Transmission

For downlink transmission, to reduce the computational
complexity, the user-centric approach is adopted, e.g., each
device is served by a subset of APs or each AP serves a subset
of devices. Denote Mk as the set of APs that serve the kth
device and Um as the set of devices that are served by the mth
AP, respectively. The transmitted signal from the mth AP is
denoted as

xm =
∑

k∈Um

√
pdm,ka

∗
m,ksk, (6)

where pdm,k is the transmission power, am,k is the precoding
vector, and sk is the data symbol to the kth device.

The received signal at the kth device is

ydk =

M∑
m=1

∑
k′∈Um

√
pdm,k′g

T
m,ka

∗
m,k′sk′ + nk

=

K∑
k′=1

∑
m∈Mk′

(gm,k)
T
a∗m,k′

√
pdm,k′sk′ + nk, (7)

where nk is the noise with the distribution of CN (0, 1).
Besides, since there are no downlink pilots, we assume that
the kth device treats the mean of the effect channel gain as
the true channel for signal detection [35]. Then, the received
signal at the kth device can be rewritten as

ydk = E

{ ∑
m∈Mk

(gm,k)
T
a∗m,k

√
pdm,k

}
︸ ︷︷ ︸

DSk

sk

+

{ ∑
m∈Mk

(gm,k)
T
a∗m,k

√
pdm,k −DSk

}
︸ ︷︷ ︸

LSk

sk, (8)

+

K∑
k′ ̸=k

∑
m∈Mk′

(gm,k)
T
a∗m,k′

√
pdm,k′︸ ︷︷ ︸

UIk,k′

sk′ + nk︸︷︷︸
Nk

,

where DSk is the desired signal, LSk is the leaked signal,
UIk,k′ represents the interference due to the k′th device, and
Nk is the noise term. The SINR of the kth device is given by

γk =
|DSk|2

|LSk|2 +
∑K

k′ ̸=k |UIk,k′ |2 + |Nk|2
. (9)

For the precoding vector am,k, we consider the following
three linear precoding schemes [25], [36]

am,k =



Ĝmek√
E
{
∥Ĝmek∥2

} , MRT

Ĝm(ĜH
mĜm)

−1
ek√

E
{∥∥∥Ĝm[ĜH

mĜm]
−1

ek

∥∥∥2
} , FZF

ĜmEUm(EH
Um

ĜH
mĜmEUm)

−1
ξm,k√

E
{∥∥∥ĜmEUm(EH

Um
ĜH

mĜmEUm)
−1

ξm,k

∥∥∥2
} , LZF

(10)
where E {·} denotes the expectation operator, Ĝm =
[ĝm,1, ĝm,2, · · ·, ĝm,K ] is the estimated channel matrix be-
tween all the devices and the mth AP, and ek represents
the kth column of unit matrix IK . For the LZF precoding
scheme, ĜmEUm

= [ĝm,d1
, ĝm,d2

, · · ·, ĝm,d|Um| ] ∈ CN×|Um|

is a matrix collecting the channels of serving devices in Um,
where Um =

{
d1, d2, · · ·, d|Um|

}
is the set of devices served

by the mth AP and EUm is
[
ed1 , ed2 , · · ·, ed|Um|

]
∈ CK×|Um|.

For ease of exposition, let U index
m = {1, 2, · · ·, |Um|} be the

set comprised of the index of Um. Given user k, we can
find an index j ∈ U index

m where dj = k. Then, we have
ξm,k =

[
I|Um|

]
(:,j)

.

As can be seen from (10), for the FZF precoding scheme,
the mth AP needs to estimate all devices’ channels, and thus
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it can suppress the interference of all devices by sacrificing
spatial degrees of freedom. In contrast, the mth AP using the
MRT and the LZF precoding methods only needs to know the
serving devices’ CSI, which reduces the implementation com-
plexity. Besides, the system based on the LZF precoder can
only suppresses the interference causing by serving devices,
which strikes a balance between the available spatial degrees
of freedom and the interference suppression.

D. Achievable Data Rate under Finite Blocklength

Based on Shannon’s coding theorem, the Shannon capacity
is defined as the maximum coding rate that there exists an
encoder/decoder pair that can enable the DEP to approach
zero when the channel blocklength is infinity [37]. However, in
short packet transmission, the DEP has a non-negligible impact
on the data rate. In [4], the authors derived the approximate
achievable data rate for the kth device under FCBL, which is
given by

Rk ≈ (1− η) log2 (1 + γk)−
√

(1− η)Vk (γk)

L

Q−1 (εk)

ln 2
,

(11)
where η = K/L, γk is the kth device’s SINR, εk is
DEP, Vk is the channel dispersion with Vk (γk) = 1 −
(1 + γk)

−2, and Q−1 (εk) is the inverse function of Q (εk) =
1√
2π

∫∞
εk

e−t2/2dt of the kth device.
The ergodic data rate of the kth device under FCBL is given

by

R̄k ≈ E


1− η

ln 2

ln (1+γk)−
Q−1 (εk)√
L (1− η)

√√√√√ 2
γk

+ 1(
1
γk

+ 1
)2

 ,

≜
1− η

ln 2
E
{
fk

(
1

γk

)}
,

(12)

where fk(x) = ln(1 + 1
x ) −

Q−1(εk)√
L(1−η)

√
2x+1
(1+x)2 is a function

based on the kth device’s DEP requirements, and the expec-
tation is taken over the small-scale fading channel. As can be
seen from (12), the closed-form expression of the ergodic data
rate is challenging to derive, and thus we cannot allocate the
power based on the exact expression of (12). To address this
issue, we aim to derive the LB of the ergodic data rate which
is more convenient for resource allocation.

Assuming that the data rate Rk of any device is no smaller
than 0, we have the following inequality

Q−1 (εk)√
L (1− η)

≤

(
1
γk

+ 1
)
ln (1 + γk)√

2
γk

+ 1

∆
= g

(
1

γk

)
, (13)

where g(x) is equal to (1+x) ln(1+ 1
x )√

2x+1
. We can readily check

that the first-order derivative of g (x) is smaller than 0, and
thus g (x) is a monotonically decreasing function. Besides, the

feasible region of fk (x) is 0 ≤ x ≤ g−1

(
Q−1(εk)√
L(1−η)

)
. As a

result, we have the following lemma.

Lemma 1: Function fk (x) is a decreasing and convex

function when 0 < x ≤ g−1

(
Q−1(εk)√
L(1−η)

)
.

Proof : Please refer to Appendix B in [38]. ■

By using Jensen’s inequality and Lemma 1, we have

R̄k ≥ R̂k ≜
1− η

ln 2
fk (1/γ̂k) , (14)

where R̂k is the LB data rate of the kth device, and γ̂k is
γ̂k = 1

E(1/γk)
.

To obtain the closed-form expression of R̂k, the kth device’s
SINRs based on the MRT, FZF, and LZF precoding schemes
should be derived. Specifically, we have the following results.

Theorem 1: The ergodic achievable data rate for the kth
device using the MRT precoding scheme under FCBL can be
lower bounded by

R̂MRT
k ≜

1− η

ln 2
fk

(
1

γ̂MRT
k

)
, (15)

where γ̂MRT
k is denoted as

γ̂MRT
k =

( ∑
m∈Mk

√
Npdm,kλm,k

)2

K∑
k′=1

∑
m∈Mk′

pdm,k′βm,k + 1

. (16)

Proof : Please refer to Appendix A. ■

Theorem 2: Using the FZF precoding scheme, the kth
device’s ergodic data rate is lower bounded by

R̂FZF
k ≜

1− η

ln 2
fk

(
1

γ̂FZF
k

)
, (17)

where γ̂FZF
k is denoted as

γ̂FZF
k =

( ∑
m∈Mk

√
(N −K)pdm,kλm,k

)2

K∑
k′=1

∑
m∈Mk′

pdm,k′ (βm,k − λm,k) + 1

, (18)

where the number of antennas N should be larger than the
number of devices K.

Proof : Please refer to Appendix B. ■

Theorem 3: The kth device’s ergodic data rate based on the
LZF precoding scheme is lower bounded by

R̂LZF
k ≜

1− η

ln 2
fk

(
1

γ̂LZF
k

)
, (19)

where γ̂LZF
k is given by (20) at the bottom of next page. In

(20), τm means the number of devices served by the mth AP
and its value is given by τm = |Um|. Here, the number of
antennas N should be larger than τm.

Proof : Please refer to Appendix C. ■

From the expressions of SINRs in (18) and (20), the FZF
precoding scheme is a special case of the LZF precoder, i.e.,
the device is served by all APs. Besides, we also note that τm
is always no larger than the number of devices K, as Um is
a subset of devices. Therefore, by choosing the optimal set of
APs, it is reasonable for the system to adopt the LZF precoding
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scheme to support more devices than that based on the FZF
precoder.

III. POWER ALLOCATION

In this section, we aim to optimize the power allocation to
maximize the weighted sum rate.

A. Problem Formulation

We assume that all the devices have the same bandwidth B,
and we aim to maximize the weighted sum rata with limited
energy constraints and the minimal data rate requirement.
Mathematically, the optimization problem can be formulated
as

max
{pp

k},{pd
m,k}

K∑
k=1

wkR̂k (21a)

s.t. R̂k ≥ Rreq
k ,∀k, (21b)

ppk ≤ Pmax,p
k ,∀k (21c)∑

k∈Um

pdm,k ≤ P d
m,∀m, (21d)

where R̂k denotes the LB data rate based on the above-
mentioned three precoding schemes, Rreq

k is the kth device’s
data rate requirement, wk is the weight of the kth device,
Pmax,p
k is the maximal power of the kth device, P d

m is the
mth AP’s maximal transmission power. Specifically, constraint
(21b) means the kth device’s minimal data rate requirements,
constraint (21c) and constraint (21d) mean that the uplink
training power of each device and the total transmission power
of each AP are limited.

For the power allocation based on infinite blocklength in
[39], [40], the problem can be converted into a convex problem
by introducing slack variables, which can be readily solved
by the bisection search algorithm. However, maximizing the
weighted sum rate is an NP-hard problem, which cannot be
readily solved. Besides, it is more challenging to solve the
weighted sum rate problem under imperfect CSI and FCBL.
Therefore, we first simplify the problem, and then propose an
efficient algorithm for solving the problem with polynomial-
time complexity.

Using Lemma 1, the minimal data rate requirement in (21b)
can be transformed into the kth device’s requirement of SINR,
denoted as

γ̂k ≥ 1

f−1
k

(
Rreq

k ln 2

1−η

) , (22)

where γ̂k represents the kth device’s SINR using the above-
mentioned precoding schemes. Besides, we find the globally
optimal solution for pilot power based on the following lemma.

Lemma 2: fk( 1
γ̂k
) is a monotonically increasing function of

pilot power ppk when 0 < 1
γ̂k

≤ g−1

(
Q−1(εk)√
L(1−η)

)
.

Proof : Please refer to Appendix D. ■

By using (22) and substituting ppk = Pmax,p
k into the SINR’s

expression, Problem (21) can be simplified as

max
{pd

m,k}

K∑
k=1

wkR̂k (23a)

s.t. γ̂k ≥ 1

f−1
k

(
Rreq

k ln 2

1−η

) ,∀k, (23b)

∑
k∈Um

pdm,k ≤ Pm,∀m. (23c)

Then, by introducing slack variables χk, Problem (21) can
be equivalently transformed into the following optimization
problem

max
{pd

m,k},{χk}

K∑
k=1

wk
(1− η)

ln 2
[ln (1 + χk)− αkG (χk)] (24a)

s.t. γ̂k ≥ χk,∀k, (24b)

χk ≥ 1

f−1
k

(
Rreq

k ln 2

1−η

) ,∀k, (24c)

(23c), (24d)

where G (χk) is defined as G (χk) ≜

√
2

χk
+1(

1
χk

+1
)2 , and αk is

αk = Q−1(εk)√
L(1−η)

.

To further simplify the objective function in (24a), the
following lemmas are introduced.

Lemma 3: For any given x̂ ≥ 0, function ln (1 + x) can be
lower bounded by

ln (1 + x) ≥ ρ lnx+ δ, (25)

where ρ and δ are expressed as

ρ =
x̂

1 + x̂
, δ = ln (1 + x̂)− x̂

1 + x̂
ln (x̂) . (26)

Proof : Please refer to Appendix E. ■

Lemma 4: For any given x̂ ≥
√
17−3
4 , function G (x) always

satisfies the following inequality

G (x) ≤ ρ̂ ln (x) + δ̂, (27)

where ρ̂ and δ̂ are given by

ρ̂ =
x̂√

x̂2 + 2x̂
− x̂

√
x̂2 + 2x̂

(1 + x̂)
2 , (28)

γ̂LZF
k =

( ∑
m∈Mk

√
(N − τm) pdm,kλm,k

)2

K∑
k′=1

[ ∑
m∈{Mk′∩Mk}

pdm,k′ (βm,k − λm,k) +
∑

m∈{Mk′\{Mk∩Mk′}}
pdm,k′βm,k

]
+ 1

. (20)
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and

δ̂ =

√
1− 1

(1 + x̂)
2 − ρ̂ ln (x̂) . (29)

Proof : Please refer to Appendix D in [18]. ■

By using Lemma 3 and Lemma 4, the weighted data rate
can be approximated in an iterative manner, which is detailed
as follows

wk
(1− η)

ln 2
[ln (1 + γk)− αkG (γk)]

≥wk
(1− η)

ln 2

[
ρ
(i)
k ln (γk) + δ

(i)
k − αkρ̂

(i)
k ln (γk)− αk δ̂

(i)
k

]
,

(30)

where ρ
(i)
k , δ(i)k , ρ̂(i)k , and δ̂

(i)
k are obtained based on (26), (28),

and (29) by using x̂ = γ
(i)
k in the ith iteration. As a result,

the weighted sum rate in (24a) can be lower bounded by
K∑

k=1

wk
(1− η)

ln 2
[ln (1 + χk)− αkG (χk)]

≥
K∑

k=1

wk
(1− η)

ln 2

[
ln (χk)

[
ρ
(i)
k −αkρ̂

(i)
k

]
+ δ

(i)
k − αk δ̂

(i)
k

]
,

(31)

where the equality holds only when χk = χ
(i)
k .

Next, we focus on the term consisting of variable χk in
(31), and solve the following subproblem in the ith iteration

max
{pd

m,k},{χk}

K∏
k=1

χk
ŵ

(i)
k (32a)

s.t. (24b), (24c), (23c), (32b)

where ŵ
(i)
k is equal to ŵ

(i)
k = wk

(1−η)
ln 2

(
ρ(i) − αkρ̂

(i)
)
.

Obviously, the problem in (32) is not a GP problem as
constraint (24b) is not a monomial function [41]. To tackle this
issue, considering the different expressions for various precod-
ing schemes, we denote the numerator and the denominator of
SINR γ̂k as (θk)

2 and ϖk, respectively, and then introduce a
general theorem to approximate θk based on abovementioned
three precoding schemes as a monomial function.

Theorem 4: For any given p̂dm,k > 0, θk is lower bounded
by

θk =
∑

m∈Mk

√
(N − tm) pdm,kλ̂m,k

≥ ck
∏

m∈Mk

[
(N − tm) pdm,kλ̂m,k

]am,k

,
(33)

where λ̂m,k is equal to λ̂m,k =
KPmax,p

k (βm,k)
2

KPmax,p
k βm,k+1

, tm is a
constant that depends on the different precoding schemes, am,k

and ck are the coefficients. Specifically, tm is give by

tm =

 0,
K,
τm,

MRT
FZF
LZF

. (34)

The coefficients am,k and ck are given by

am,k =

√
(N − tm) p̂dm,kλ̂m,k

2θ̂k
, (35)

and

ck =
θ̂k∏

m∈Mk

[
(N − tm) p̂dm,kλ̂m,k

]am,k
, (36)

where θ̂k is obtained by using pdm,k = p̂dm,k. Besides, it is
obvious that the inequality in (33) holds with equality when
pdm,k = p̂dm,k.

Proof : Please refer to Appendix F. ■
By using Theorem 4, similar to the objection function in

(24a), we can approximate the numerator (θk)2 in an iterative
manner. Specifically, c(i)k and a

(i)
m,k are obtained based on (35)

and (36) by using p̂dm,k = p
d,(i)
m,k , and θk can be lower bounded

by

θk ≥ c
(i)
k

∏
m∈Mk

[
(N − tm) pdm,kλ̂m,k

]a(i)
m,k

. (37)

Based on the abovementioned simplifications and approx-
imations, the problem is transformed into the following GP
problem

max
{pd

m,k},{χk}

K∏
k=1

χk
ŵ

(i)
k (38a)

s.t.
(
c
(i)
k

)2 ∏
m∈Mk

[
(N − tm) pdm,kλ̂m,k

]2a(i)
m,k

≥ χkϖk,∀k, (38b)
(24c), (23c). (38c)

To run the iterative algorithm, it is necessary to find a
feasible initial solution. To deal with this issue, we construct an
alternative optimization problem by introducing an auxiliary
variable φ, which is given by

max
φ,{pd

m,k}
φ (39a)

s.t.
(
c
(i)
k

)2 ∏
m∈Mk

[
(N − tm) pdm,kλ̂m,k

]2a(i)
m,k

≥ φ

f−1
k

(
Rreq

k ln 2

1−η

)ϖk, (39b)

(23c). (39c)

Obviously, Problem (39) is also a GP problem, and is always
feasible. Besides, Problem (38) is feasible only when φ is
no smaller than 1. Furthermore, we define an error tolerance
ξ to guarantee that the transmission power converges to the
optimal solutions. Based on the abovementioned discussions,
Algorithm 1 is provided to maximize the weighted sum rate.

B. Algorithm Analysis

1) Feasibility Analysis: For Algorithm 1, we need to check
whether constraint (38b) in the ith iteration holds or not in
the (i+1)th iteration as only constraint (38b) is approximated
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Algorithm 1 Iterative Algorithm for Solving Maximum
Weighted Sum Rate

1: Initialize iteration number i = 1, and error tolerance ζ =
0.01;

2: Initialize the pilot power {ppk = Pmax,p
k ,∀k}, calculate

transmission power
{
p
d,(1)
m,k ,∀m, k

}
by solving Problem

(39), obtain SINR
{
χ
(1)
k ,∀k

}
and the weighted sum rate

in (21a) denoted as Obj(1). Set Obj(0) = Obj(1)ζ;
3: while

(
Obj(i) −Obj(i−1)

)/
Obj(i−1) ≥ ζ do

4: Update
{
ŵ

(i)
k , c

(i)
k , a

(i)
m,k,∀m, k

}
;

5: Update i = i + 1, solve Problem (38) by using the
CVX package to obtain

{
p
d,(i)
m,k ,∀m, k

}
, calculate SINR{

χ
(i)
k ,∀k

}
and then obtain the weighted sum rate,

denoted as Obj(i);
6: end while

in an iterative manner. Constraint (38b) in the ith iteration is
given by(

c
(i−1)
k

)2 ∏
m∈Mk

[
(N − tm) p

d,(i)
m,k λ̂m,k

]2a(i−1)
m,k ≥ χ

(i)
k ϖ

(i)
k ,

(40)
where

{
χ
(i)
k , p

d,(i)
m,k ,∀m, k

}
is the optimal solution in the ith

iteration, and ϖ
(i)
k is obtained by using pdm,k = p

d,(i)
m,k .

Using Theorem 4 and (37), we have

c
(i)
k

∏
m∈Mk

[
(N − tm) p

d,(i)
m,k λ̂m,k

]a(i)
m,k

= θ
(i)
k

≥ c
(i−1)
k

∏
m∈Mk

[
(N − tm) p

d,(i)
m,k λ̂m,k

]a(i−1)
m,k

.

(41)

Then, by combining (40) with (41), we have(
c
(i)
k

)2 ∏
m∈Mk

[
(N − tm) p

d,(i)
m,k λ̂m,k

]2a(i)
m,k ≥ χ

(i)
k ϖ

(i)
k . (42)

Obviously, the solution is also feasible in the (i+1)th iteration.
2) Convergence Analysis: We prove that our algorithm can

converge to a locally optimal solution. Denote Obj(i) as the
weighted sum rate in the ith iteration. Since the solution in
the ith iteration is also feasible in the (i + 1)th iteration, we
have

K∑
k=1

wk
(1− η)

ln 2

[
ln
(
χ
(i+1)
k

)[ρ(i)
k −αkρ̂

(i)
k

]
+ δ

(i)
k − αk δ̂

(i)
k

]

≥
K∑

k=1

wk
(1− η)

ln 2

[
ln
(
χ
(i)
k

)[ρ(i)
k −αkρ̂

(i)
k

]
+ δ

(i)
k − αk δ̂

(i)
k

]
=Obj(i),

(43)

where
{
χ
(i+1)
k ,∀k

}
is the optimal solution to Problem (38)

in the (i+ 1)th iteration.

Substituting χk = χ
(i+1)
k into the inequality in (31), we

have
K∑

k=1

wk
(1− η)

ln 2

[
ln
(
1 + χ

(i+1)
k

)
− αkG

(
χ
(i+1)
k

)]
≥

K∑
k=1

wk
(1− η)

ln 2
×[

ln
(
χ
(i+1)
k

)[ρ(i+1)
k −αkρ̂

(i+1)
k

]
+δ

(i+1)
k −αk δ̂

(i+1)
k

]

≥
K∑

k=1

wk
(1− η)

ln 2

[
ln
(
χ
(i+1)
k

)[ρ(i)
k −αkρ̂

(i)
k

]
+ δ

(i)
k − αk δ̂

(i)
k

]
.

(44)

Then, by combining (43) with (44), we have

Obj(i+1)

=

K∑
k=1

wk
(1− η)

ln 2

[
ln
(
1 + χ

(i+1)
k

)
− αkG

(
χ
(i+1)
k

)]
≥

K∑
k=1

wk
(1− η)

ln 2

[
ln
(
χ
(i+1)
k

)[ρ(i)
k −αkρ̂

(i)
k

]
+ δ

(i)
k − αk δ̂

(i)
k

]
≥ Obj(i).

(45)

Therefore, the convergence of Algorithm 1 is verified. Besides,
we can prove that Algorithm 1 can converge to the Karush-
Kuhn-Tucker (KKT) point of Problem (21) for the abovemen-
tioned precoding schemes by using the similar proof as in
Appendix B in [42].

3) Complexity Analysis: The complexity of Algorithm 1
depends on the number of iterations and complexity of each
iteration. Specifically, the main complexity of each iteration
in Algorithm 1 lies in solving Problem (38) which includes
(M + 1)K variables and (2K + M) constraints. Based on
[41], the computational complexity of this algorithm is on
the order of O(Niter ×max{[(M + 1)K]3, (2K +M)[(M +
1)K]2, Ncost}), where Niter is the number of iterations and
Ncost is the computational complexity of calculating the first-
order and second-order derivatives of the objective function
and constraint functions of Problem (38) [34]. Furthermore,
our simulation results demonstrate that Algorithm 1 can con-
verge to the locally optimal solution with fewer iterations.

IV. SIMULATION RESULTS

The performance of the proposed algorithms are numeri-
cally evaluated and discussed in this section. We first introduce
the simulation setup and the related simulation parameters.

A. Simulation Scenario

The smart factory is assumed to be located in a D × D
square. In contrast to the wraparound deployment in [43],
[44], we uniformly deploy M APs at constellation points to
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TABLE I: Simulation Parameters

Parameters Setting Value
Carrier frequency (f ) 2.1 GHz

Bandwidth (B) 10 MHz
Transmission duration (TB) 0.05 ms

Blocklength (L = BTB) 500
Height of APs (hAP) 15 m

Height of devices (hu) 1.6 m
Noise figure (NdB) 9 dB

Number of devices (K) 10
Required data rate (Rreq) 0.5 bit/s/Hz

Decoding error probability εk 10−7

Size of square (D) 1000 m
Pilot power Pmax

k , ∀k 100 mW
d0 10 m
d1 50 m

provide uniform service for the devices. The large-scale fading
coefficient model is adopted [23], which is given by

PLm,k =

 Lloss+35log10 (dm,k) , dm,k>d1,
Lloss+15log10 (d1)+20log10 (d0) , dm,k≤d0,
Lloss+15log10 (d1)+20log10 (dm,k) , other,

(46)
where dm,k (km) is the distance between the mth AP and the
kth device, and Lloss (dB) is a constant factor that depends on
the carrier frequency f (MHz), the heights of the APs hAP (m)
and devices hu (m). Specifically, Lloss is given by

Lloss = 46.3 + 33.9log10 (f)− 13.82log10 (hAP)

− (1.1log10 (f)− 0.7)hu + (1.56log10 (f)− 0.8) .
(47)

Besides, for the small-scale fading, it is generally modeled
as Rayleigh fading with zero mean and unit variance. The
corresponding normalized pilot power ppk and transmission
power pdm,k can be computed through dividing these powers
by the noise power, which is given by

Pn = B × kB × T0 × 10
NdB
10 (W) , (48)

where kB = 1.381×10−23 (Joule per Kelvin) is the Boltzmann
constant, and T0 = 290 (Kelvin) is the noise temperature.
The weights for all the devices are randomly generated within
[0,1]. Unless otherwise specified, the simulation parameters
are similar to those in [25], [45] and summarized in Table I.
More importantly, we fix the total number of antennas in this
smart factory to investigate the deployment of APs. In other
words, if each AP is equipped with more antennas, this area
will deploy less APs.

As mentioned before, the kth device is served by the set
of APs Mk. Specifically, it is assumed that the large-scale
fading factors are known at the mth AP, and then the large-
scale fading factors {β1,k, β2,k, · · ·, βM,k} are sorted in a
descending order. Finally, the large-scale fading factors are
selected in turn until satisfying the following condition∑

m∈Mk
βm,k∑M

m=1 βm,k

≥ Th, (49)

where Th is the threshold. For the set of devices served by the
mth AP, by checking whether the mth AP belongs to the set
of Mk, k = 1, 2, · · ·,K, we can obtain Um.

B. Properties of the Proposed Algorithm

In this subsection, we first check the gap between the LB
data rate and the ergodic data rate, illustrate the convergence
behavior of the proposed algorithm, and then investigate the
impact of threshold on the system performance.

1) Tightness: The simulation results are obtained through
the Monte-Carlo simulation by averaging over 104 random
channel generations with Th = 0.9 and pdm,k = 0.1 W , ∀m, k.
As can be seen from Fig. 2, the derived LB data rate is close
to the ergodic rate for any system parameters, which confirms
that the LB data rate is suitable and reasonable for power
allocation.

2) Convergence: We investigate the convergence behavior
of the proposed algorithm with MN = 144 in Fig. 3. For
given any transmission power Pm and threshold Th, the system
performance for three precoding schemes can converge to the
locally optimal solution within only 2 or 3 iterations, which
demonstrates the rapid convergence of the proposed algorithm.

3) Threshold: The performance of the proposed algorithm is
obtained by averaging 100 random devices’ locations and the
system performance is set to zero if any devices cannot satisfy
the data requirements. Fig. 4 shows the system performance
versus different thresholds with Pm = 1 W , ∀m. Obviously,
it is observed that the optimal value of Th is 1 for the MRT
and FZF schemes and 0.95 for the LZF precoder. This is
due to the fact that selecting more APs to provide service
for devices will consume the degrees of freedom for the LZF
precoding scheme, leading to performance degradation. Here,
we set Th = 0.95 for all the following simulations, to achieve a
good tradeoff between system performance and computational
complexity.

C. Effect of pilot power

In this subsection, we investigate how pilot power affects the
system performance. Fig. 5 depicts the average weighted sum
rate versus the pilot power with MN = 144 and Pm = 1 W ,
∀m, by averaging 100 random devices’ locations. As can be
seen from Fig. 5, the average weighted sum rate increases with
the pilot power for any cases, which demonstrates that more
accurate channel estimation is beneficial for enhancing the
system performance. More importantly, we find an interesting
phenomenon that the CF mMIMO (e.g., M ≥ 4) significantly
outperforms the centralized mMIMO system (e.g., M = 1)
when the pilot power is low. This is attributed to the fact
that the devices are closer to the APs in CF mMIMO systems
than in centralized mMIMO systems, hence less pilot power
is required to satisfy the requirements of DEP and data rate.

D. Effect of The Number of APs

To fully explore the deployment of APs so as to maximize
the system performance with limited antennas, we evaluate
the average weighted sum rate versus various numbers of APs
with MN = 144 and Pm = 0.2 W , ∀m in Fig. 6. For the
MRT scheme, the average weighted sum rate initially increases
with the number of APs, and then it tends to be stable at 16
bit/s/Hz. This is due to the fact that each device relying on
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(a) MRT (b) FZF (c) LZF

Fig. 2: Weighted Sum Rate V.S. The Number of Total Antennas under various numbers of APs.

(a) MRT (b) FZF (c) LZF

Fig. 3: Convergence of proposed algorithm for different precoding schemes.

(a) MRT (b) FZF (c) LZF

Fig. 4: Performance of the proposed algorithm versus threshold for different precoding schemes.

the MRT precoding scheme becomes interference limited and
tends to be stable. However, for the FZF precoding scheme, the
system performance will decrease when the number of APs is
large, as deploying more APs causes the reduction in degrees
of freedom. In contrast, the system performance using the LZF
precoding scheme increases with the number of APs. This is
because the LZF precoding scheme strikes a balance between
interference suppression and available degrees of freedom,
thereby supporting more devices.

E. Effect of The Number of Devices

To support more devices, a round robin-based scheduler is
adopted for the case of K ≥ N or K ≥ |Um|. Specifically,
the APs would first transmit signals to the K1 devices, and

then serve the remaining (K − K1) devices in the next
time interval. By averaging over 100 random generations, we
investigate the relationship between the number of devices
and the system performance with MN = 144, K1 = K

2 ,
and Pm = 0.2 W , ∀m. To show the effectiveness of our
proposed method, the results of the Shannon capacity, the
algorithm in [11], and power allocation in [25] are presented.
Furthermore, if any devices violate the requirements, the data
rate is set to zero. Obviously, the Shannon capacity is the
ideal performance, and the benchmark one in [11] has an
unpredictable trend because it does not consider the penalty
due to short packet transmissions. The performance relying
on the power allocation of [25] can approach that of the
proposed method, owing to enhanced path gain. In contrast,
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(a) MRT (b) FZF (c) LZF

Fig. 5: Performance of the algorithm versus pilot power for different precoding schemes.

Fig. 6: Performance of proposed algorithm V.S. Number of
APs.

the proposed algorithm can approach the upper bound in CF
mMIMO systems, which demonstrates the effectiveness of our
algorithm. More importantly, the weighted sum rate in the
centralized mMIMO is almost zero owing to the failure to
meet the requirements, while there is a significant performance
improvement in CF mMIMO systems. This is due to the fact
that the centralized mMIMO can only support those devices
that are close to the APs, instead of all devices, leading to
zero data rate. Furthermore, the average weighted sum rate of
M = 9 APs relying on the FZF precoding increases when
K ≤ 10 and then declines when 10 ≤ K ≤ 14. Thereafter,
APs based on the FZF precoding scheme can support extra
devices with enhanced URLLC services by implementing
the scheduler, which motivates us to enforce the appropriate
scheduler when the number of served devices approaches that
of equipped antennas per AP.

V. CONCLUSION

In this paper, the resource allocation for a CF mMIMO-
enabled URLLC dowlink system was treated. We first derived
the closed-form LB data rates with imperfect CSI based on
MRT, FZF, and LZF precoding, and maximized the weighted
sum rate based on the derived LB data rate. Then, by deriving
the globally optimal pilot power and using SCA, the non-
convex problem was transformed into a series of subproblems,
which can be solved in an iterative manner by our proposed
algorithm. Simulation results demonstrated the rapid conver-
gence speed of our algorithm and the optimal AP selection

strategy based on the short packet transmission. Furthermore,
the quality of URLLC services will benefit by deploying more
APs, except for the FZF precoding scheme. More importantly,
the power allocation strategies under the short packet regime
can significantly enhance the system performance over the
existing algorithms.

Regarding CF mMIMO systems, it is impractical to assign
orthogonal pilot sequences to multiple devices under the
FCBL. Therefore, investigating the pilot allocation scheme
and analyzing the impact of sharing pilot sequences would
be left for our future work. Furthermore, since it is unrealistic
to assume an idealized fronthaul link between the CPU and
the APs, the limited fronthaul will be studied in the future.

APPENDIX A
PROOF OF THEOREM 1

Before proving this theorem, we need to calculate the
precoding vector for the MRT case. The normalized precoding
vector is given by

aMRT
m,k =

αm,k

(
gm,k + np

m,k

)
√
E
∥∥∥αm,k

(
gm,k + np

m,k

)∥∥∥2 =
gm,k + np

m,k√
N
(
βm,k + 1

Kpp
k

)
=

√
λm,k

βm,k

√
N

(
gm,k + np

m,k

)
,

(50)

where αm,k is αm,k =
Kpp

kβm,k

Kpp
kβm,k+1

.

Then, we need to derive the expressions of |DSk|2,
E
(
|LSk|2

)
, E
(
|UIk,k′ |2

)
and E

(
|Nk|2

)
, respectively. We

first compute DSk. Since ĝm,k and g̃m,k are independent, we
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(a) MRT (b) FZF (c) LZF

Fig. 7: Performance of proposed algorithm V.S. Number of devices for different precoding schemes.

have
|DSk|2

=

∣∣∣∣∣E
{ ∑

m∈Mk

√
pdm,k(gm,k)

T (
aMRT
m,k

)∗}∣∣∣∣∣
2

=

∣∣∣∣∣E
{ ∑

m∈Mk

√
pdm,k(gm,k)

T

√
λm,k

βm,k

√
N

(
gm,k + np

m,k

)∗}∣∣∣∣∣
2

=

∣∣∣∣∣ ∑
m∈Mk

√
Npdm,kλm,k

∣∣∣∣∣
2

.

(51)

The term E
(
|LSk|2

)
is given by

E
{
|LSk|2

}
= E


∣∣∣∣∣ ∑
m∈Mk

√
pdm,k(gm,k)

T (
aMRT
m,k

)∗ −DSk

∣∣∣∣∣
2


+ E


∣∣∣∣∣∣
∑

m∈Mk

√
pdmkλm,k

βm,k

√
N

(gm,k)
T
(
np
m,k

)∗∣∣∣∣∣∣
2


−

( ∑
m∈Mk

√
Nλm,kpdm,k

)2

=
∑

m∈Mk

pdm,kβm,k.

(52)

Then, E
(
|UIk,k′ |2

)
can be calculated as

E
(
|UIk,k′ |2

)
= E


∣∣∣∣∣∣
∑

m∈Mk′

√
pdm,k′γm,k′

βm,k′
√
N

(gm,k)
T
(gm,k′)

∗

∣∣∣∣∣∣
2


+ E


∣∣∣∣∣∣
∑

m∈Mk′

√
pdm,k′γm,k′

βm,k′
√
N

(gm,k)
T
(
np
m,k′

)∗∣∣∣∣∣∣
2
 .

(53)

For each term in (53), we have

E


∣∣∣∣∣∣
∑

m∈Mk′

√
pdm,k′γm,k′

βm,k′
√
N

(gm,k)
T
(gm,k′)

∗

∣∣∣∣∣∣
2


=
∑

m∈Mk′

pdm,k′γm,k′
βm,k

βm,k′

(54)

and

E


∣∣∣∣∣∣
∑

m∈Mk′

√
pdm,k′γm,k′

βm,k′
√
N

(gm,k)
T
(
np
m,k′

)∗∣∣∣∣∣∣
2


=
∑

m∈Mk′

pdm,k′γm,k′
1

Kppk′

βmk

(βmk′)
2 .

(55)

By combining (54) with (55), we have

E
(
|UIk,k′ |2

)
=

∑
m∈Mk′

pdm,k′γm,k′
βm,k

βm,k′
+

∑
m∈Mk′

pdm,k′γm,k′
βm,k

(βm,k′)
2

1

Kppk′

=
∑

m∈Mk′

pdm,k′βm,k. (56)

Finally, we compute E
(
|Nk|2

)
, which is written as

E
{
|nk|2

}
= 1. (57)

Substituting (51), (52), (56), and (57) into (9), we obtain
γ̂MRT
k in (16).

APPENDIX B
PROOF OF THEOREM 2

Before proving this theorem, we need to provide the pre-
coding vector. By using the identity [46], the normalized
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coefficient can be derived as

E

{∥∥∥∥Ĝm

[
ĜH

mĜm

]−1

ek

∥∥∥∥2
}

= E
{
(ek)

H
[
ĜH

mĜm

]−1(
Ĝm

)H
Ĝm

[
ĜH

mĜm

]−1

ek

}
= E

{
(ek)

H
[
ĜH

mĜm

]−1

ek

}
=

1

(N −K)λm,k
. (58)

Then, |DSk| can be derived as

|DSk|2

=

∣∣∣∣∣E
{ ∑

m∈Mk

(gm,k)
T (

aFZFm,k

)∗√
pdm,k

}∣∣∣∣∣
2

=

∣∣∣∣∣E
{ ∑

m∈Mk

(ĝm,k + g̃m,k)
T (

aFZFm,k

)∗√
pdm,k

}∣∣∣∣∣
2

=

( ∑
m∈Mk

√
(N −K) pdm,kλm,k

)2

.

(59)

Next, the leakage power can be formulated as

E
{
|LSk|2

}
= E


∣∣∣∣∣ ∑
m∈Mk

(gm,k)
T (

aFZFm,k

)∗√
pdm,k −DSk

∣∣∣∣∣
2


= E


∣∣∣∣∣ ∑
m∈Mk

(g̃m,k)
T (

aFZFm,k

)∗√
pdm,k

∣∣∣∣∣
2


=
∑

m∈Mk

pdm,k (βm,k − λm,k).

(60)

The term E
(
|UIk,k′ |2

)
can be expressed as

E
{
|UIk,k′ |2

}
= E


∣∣∣∣∣∣
∑

m∈Mk′

(gm,k)
T (

aFZFm,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣
∑

m∈Mk′

(g̃m,k)
T (

aFZFm,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


=
∑

m∈Mk′

pdm,k′ (βm,k − λm,k).

(61)

Finally, we complete the proof by substituting the expres-
sions of (59), (60), (61), and E

{
|nk|2

}
= 1 into the SINR

expression.

APPENDIX C
PROOF OF THEOREM 3

The normalized coefficient can be derived as

E

{∥∥∥∥ĜmEUm

(
EH

Um
ĜH

mĜmEUm

)−1

ξm,k

∥∥∥∥2
}

= E
{
(ξm,k)

H
(
EH

Um
ĜH

mĜmEUm

)−1

ξm,k

}
=

1

(N − τm)λm,k
, (62)

where τm is defined in (34).

Then, the desired signal |DSk|2 can be given by (63) at the
bottom of the next page.

Next, similar to the FZF case, the leakage power for the AP
using the LZF precoding scheme can be formulated as

E
{
|LSk|2

}
= E


∣∣∣∣∣ ∑
m∈Mk

(gm,k)
T (

aLZFm,k

)∗√
pdm,k −DSk

∣∣∣∣∣
2


= E


∣∣∣∣∣ ∑
m∈Mk

(g̃m,k)
T (

aLZFm,k

)∗√
pdm,k

∣∣∣∣∣
2


=
∑

m∈Mk

pdm,k (βm,k − λm,k).

(64)

The term of the devices’ interference is different from that
of the FZF scheme, as the interference from other devices
may not be suppressed. The term E

(
|UIk,k′ |2

)
can be given

by (65) at the bottom of the next page.

As can be seen from (65), the devices’ interference consists
of two terms. In specific, the first term means that the vector
ĝm,k is chosen by the selection matrix EUm

and the second
term means that not chosen by matrix EUm

. Obviously, the
interference of the first term can be suppressed as ĝm,ka

LZF
m,k′

is equal to zero, while the second term’s interference cannot
be suppressed.

Then, the first and the second terms of E
(
|UIk,k′ |2

)
are

given by

E


∣∣∣∣∣∣

∑
m∈{Mk∩Mk′}

(gm,k)
T (

aLZFm,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣

∑
m∈{Mk∩Mk′}

(g̃m,k)
T (

aLZFm,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


=
∑

m∈{Mk∩Mk′}

pdm,k′ (βm,k − λm,k),

(66)
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and

E


∣∣∣∣∣∣

∑
m∈{Mk′\{Mk∩Mk′}}

(gm,k)
T (

aLZFm,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


=
∑

m∈{Mk′\{Mk∩Mk′}}

pdm,k′βm,k.

(67)

Finally, the kth device’s SINR using the LZF precoding
scheme is obtained by substituting the expressions of (63),
(64), (65), and E

{
|nk|2

}
= 1 into (9).

APPENDIX D
PROOF OF LEMMA 2

We first derive the first-order derivative of fk( 1
γ̂k
), denoted

as
dfk

(
1
γ̂k

)
dppk

=
−fk

′
(

1
γ̂k

)
(γ̂k)

2

dγ̂k
dppk

. (68)

As can be seen, the sign of the first-order derivative depends
on the sign of dγ̂k

dpp
k

. Due to the different SINR expressions of
the three precoding schemes, we define a general expression
γ̂k = Y (λm,k). Then, it is readily to prove that γ̂k mono-
tonically increases with λm,k, and the first-order derivative
of λm,k is K(βm,k)

2

(Kpp
kβm,k+1)

2 > 0. Therefore, the function fk(
1
γ̂k
)

monotonically increases with pilot power ppk, and the data rate
can be maximized when ppk = Pmax,p

k .

APPENDIX E
PROOF OF LEMMA 3

The inequality in (25) can be readily proved by substituting
the expressions of ρ and δ into (25). Then, we define J (x) =
ln (1 + x)− ρ lnx− δ, the first-order derivative is given by

dJ (x)

dx
=

x− ρ (1 + x)

(1 + x)x
=

x (1 + x̂)− x̂ (1 + x)

(1 + x̂) (1 + x)x
. (69)

Since both x and x̂ are positive values, the sign of dJ(x)
dx

only depends on the numerator. Let us define H(x) =
x (1 + x̂)− x̂ (1 + x), and then the first-order derivative of
H(x) is given by H ′(x) = 1, which means H(x) monoton-
ically increases. Consequently, since H(x̂) is equal to zero,
we have H(x) ≥ 0 when x ≥ x̂ and H(x) ≤ 0 when
x ≤ x̂, which indicates that J (x) is an increasing function
when x ≥ x̂ and a decreasing function when x ≤ x̂. As a
result, we complete the proof by showing that J (x) is always
larger than J (x̂) = 0.

APPENDIX F
PROOF OF THEOREM 4

By taking the logarithm operator for the left hand side of
(33), we have

ln (θk) = ln

( ∑
m∈Mk

√
(N − tm) pdm,kλ̂m,k

)
≜ F (x) ,

(70)
where x is given by x =[
ln[(N − t1) p

d
1,kλ̂1,k], · · ·, ln[(N − tm) pdm,kλ̂m,k]

]T
,m ∈

Mk.

|DSk|2

=

∣∣∣∣∣E
{ ∑

m∈Mk

(gm,k)
T (

aLZFm,k

)∗√
pdm,k

}∣∣∣∣∣
2

=

∣∣∣∣∣E
{ ∑

m∈Mk

√
(N − τm)λm,kpdm,k(ĝm,k)

T

(
ĜmEUm

(
EH

Um
ĜH

mĜmEUm

)−1

ξm,k

)∗
}∣∣∣∣∣

2

=

( ∑
m∈Mk

√
(N − τm) pdm,kλm,k

)2

.

(63)

E
{
|UIk,k′ |2

}
= E


∣∣∣∣∣∣
∑

m∈Mk′

(gm,k)
T (

aLZFm,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣

∑
m∈{Mk∩Mk′}

(gm,k)
T (

aLZFm,k′

)∗√
pdm,k′ +

∑
m∈{Mk′\{Mk∩Mk′}}

(gm,k)
T (

aLZFm,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣

∑
m∈{Mk∩Mk′}

(gm,k)
T (

aLZFm,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

m∈{Mk′\{Mk∩Mk′}}

(gm,k)
T (

aLZFm,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2
 .

(65)
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The first-order partial derivative of F (x) is given by

∂F (x)

∂xj,k
=

√
exj,k

2
∑

m∈Mk

√
exm,k

=

√
(N − tj) pdj,kλ̂j,k

2θk
, (71)

where e is the exponent. The second-order partial derivatives
of F (x) are given by

∂2F (x)

∂(xj,k)
2 =

√
exj,k

( ∑
m∈Mk

√
exm,k

)
−
(√

exj,k
)2

4

( ∑
m∈Mk

√
exm,k

)2 , (72)

and
∂2F (x)

∂xj,k∂xi,k
=

−
√
exj,kexi,k

4

( ∑
m∈Mk

√
exm,k

)2 . (73)

Then, we define zk =[√
ex1,k ,

√
exm,k , · · ·,

√
e
x|Mk|,k

]T
,m ∈ Mk, and thus

the Hessian matrix of F (x) can be given by (74) at the
bottom of this page.

In (74), 1 is a vector of [1, 1, · · ·, 1]T , |Mk| means the car-
dinality of the set Mk. For any given v =

[
v1, · · ·, v|Mk|

]T ∈
R|Mk|, by using the Cauchy-Schwartz inequality, we have the
inequality that is given by (75) at the bottom of this page.

Therefore, we prove ln (θk) is a convex function of x. Then,
by using Jensen’s inequality, we have

F (x) ≥
∑

m∈Mk

am,kxm,k + ln (ck) , (76)

where am,k and ck are given in (35) and (36), respectively.
Finally, we complete the proof by taking the exponential

operation for both sides of (76) and using xm,k = ln
(
pdm,k

)
.
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finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.

[5] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and
low-latency wireless communication with short packets,” Proc. IEEE,
vol. 104, no. 9, pp. 1711–1726, Sept. 2016.

[6] C. She, C. Yang, and T. Q. S. Quek, “Radio resource management for
ultra-reliable and low-latency communications,” IEEE Commun. Mag.,
vol. 55, no. 6, pp. 72–78, Jun. 2017.

[7] C. Pan, H. Ren, Y. Deng, M. Elkashlan, and A. Nallanathan, “Joint
blocklength and location optimization for URLLC-enabled UAV relay
systems,” IEEE Commun. Lett., vol. 23, no. 3, pp. 498–501, Mar. 2019.

[8] A. A. Nasir, “Min-max decoding-error probability-based resource allo-
cation for a URLLC system,” IEEE Commun. Lett., vol. 24, no. 12, pp.
2864–2867, Dec. 2020.

[9] X. Xie, X. Ou, H. Lu, and Q. Huang, “Joint uplink and downlink
resource allocation in NOMA for end-to-end URLLC services,” IEEE
Commun. Lett., vol. 25, no. 12, pp. 3942–3946, Dec. 2021.

[10] J. Wan, B. Chen, M. Imran, F. Tao, D. Li, C. Liu, and S. Ahmad,
“Toward dynamic resources management for IoT-based manufacturing,”
IEEE Commun. Mag., vol. 56, no. 2, pp. 52–59, Feb. 2018.

[11] W. R. Ghanem, V. Jamali, Y. Sun, and R. Schober, “Resource allocation
for multi-user downlink URLLC-OFDMA systems,” in Proc. IEEE Int.
Conf. Commun. Workshops (ICC Workshops), 2019, pp. 1–6.

[12] V. K. Huang, Z. Pang, C.-J. A. Chen, and K. F. Tsang, “New trends
in the practical deployment of industrial wireless: From noncritical to
critical use cases,” IEEE Ind. Electron. Mag., vol. 12, no. 2, pp. 50–58,
Jun. 2018.

[13] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral effi-
ciency of very large multiuser MIMO systems,” IEEE Trans. Commun.,
vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[14] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas
Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[15] J. Zeng, T. Lv, R. P. Liu, X. Su, N. C. Beaulieu, and Y. J. Guo,
“Linear minimum error probability detection for massive MU-MIMO
with imperfect CSI in URLLC,” IEEE Trans. Veh. Technol., vol. 68,
no. 11, pp. 11 384–11 388, Nov. 2019.
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4(1T zk)
2


( ∑

m∈Mk

√
exmk

)
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ex1,k · · · 0

0
√
exm,k 0

0 · · ·
√
e
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− zk(zk)
T


=

1

4(1T zk)
2

{
1T zkdiag {zk} − zk(zk)

T
}

︸ ︷︷ ︸
Ξ

,

(74)

vTΞv = 1T zkv
T diag {zk}v − vT zk(zk)
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v
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)( ∑
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vm
√
exm,kvm

)
−
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m∈Mk

vm
√
exm,k

)2

=
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(√√
exm,k

)2
)( ∑
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(
vm

√√
exm,k

)2
)

−

( ∑
m∈Mk

vm
√
exm,k

)2

≥ 0.
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[46] A. M. Tulino and S. Verdú, “Random matrix theory and wireless
communications,” Found. Trends Commun. Inf. Theory, vol. 1, no. 1,
pp. 1–182, 2004.

BIOGRAPHY SECTION

Qihao Peng received the B.S. and M.S. degree from
the School of Microelectronics and Communica-
tion Engineering, Chongqing University, Chongqing,
China, in 2018 and in 2021, respectively. He is
currently working toward the Ph.D. degree with the
School of Electronic Engineering and Computer Sci-
ence, Queen Mary University of London, London,
U.K. His research interests include cell-free massive
MIMO and ultra-reliable low latency communication
(URLLC).

Hong Ren received the B.S. degree in electrical
engineering from Southwest Jiaotong University,
Chengdu, China, in 2011, and the M.S. and Ph.D.
degrees in electrical engineering from Southeast
University, Nanjing, China, in 2014 and 2018, re-
spectively. From 2016 to 2018, she was a Vis-
iting Student with the School of Electronics and
Computer Science, University of Southampton, U.K.
From 2018 to 2020, she was a Post-Doctoral Scholar
with Queen Mary University of London, U.K. She
is currently an associate professor with Southeast

University. Her research interests lie in the areas of communication and signal
processing, including ultra-low latency and high reliable communications,
Massive MIMO and machine learning.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3243571

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 13,2023 at 14:24:09 UTC from IEEE Xplore.  Restrictions apply. 



16

Cunhua Pan received the B.S. and Ph.D. degrees
from the School of Information Science and En-
gineering, Southeast University, Nanjing, China, in
2010 and 2015, respectively. From 2015 to 2016,
he was a Research Associate at the University of
Kent, U.K. He held a post-doctoral position at Queen
Mary University of London, U.K., from 2016 and
2019.From 2019 to 2021, he was a Lecturer in the
same university. From 2021, he is a full professor in
Southeast University.

His research interests mainly include reconfig-
urable intelligent surfaces (RIS), intelligent reflection surface (IRS), ultra-
reliable low latency communication (URLLC) , machine learning, UAV, In-
ternet of Things, and mobile edge computing. He has published over 120 IEEE
journal papers. He is currently an Editor of IEEE Transactions on Vehicular
Technology, IEEE Wireless Communication Letters, IEEE Communications
Letters and IEEE ACCESS. He serves as the guest editor for IEEE Journal
on Selected Areas in Communications on the special issue on xURLLC in
6G: Next Generation Ultra-Reliable and Low-Latency Communications. He
also serves as a leading guest editor of IEEE Journal of Selected Topics in
Signal Processing (JSTSP) Special Issue on Advanced Signal Processing for
Reconfigurable Intelligent Surface-aided 6G Networks, leading guest editor of
IEEE Vehicular Technology Magazine on the special issue on Backscatter and
Reconfigurable Intelligent Surface Empowered Wireless Communications in
6G, leading guest editor of IEEE Open Journal of Vehicular Technology on the
special issue of Reconfigurable Intelligent Surface Empowered Wireless Com-
munications in 6G and Beyond, and leading guest editor of IEEE ACCESS
Special Issue on Reconfigurable Intelligent Surface Aided Communications
for 6G and Beyond. He is Workshop organizer in IEEE ICCC 2021 on the
topic of Reconfigurable Intelligent Surfaces for Next Generation Wireless
Communications (RIS for 6G Networks), and workshop organizer in IEEE
Globecom 2021 on the topic of Reconfigurable Intelligent Surfaces for future
wireless communications. He is currently the Workshops and Symposia officer
for Reconfigurable Intelligent Surfaces Emerging Technology Initiative. He
is workshop chair for IEEE WCNC 2024, and TPC co-chair for IEEE ICCT
2022. He serves as a TPC member for numerous conferences, such as ICC and
GLOBECOM, and the Student Travel Grant Chair for ICC 2019. He received
the IEEE ComSoc Leonard G. Abraham Prize in 2022, IEEE ComSoc Asia-
Pacific Outstanding Young Researcher Award, 2022.

Nan Liu received the B.Eng. degree in electrical
engineering from Beijing University of Posts and
Telecommunications, Beijing, P.R. China in 2001,
and the Ph.D. degree in electrical and computer
engineering from University of Maryland, College
Park, MD in 2007.

From 2007-2008, she was a postdoctoral scholar
in the Wireless Systems Lab, Department of Elec-
trical Engineering, Stanford University. In 2009,
she became a professor in the National Mobile
Communications Research Laboratory, School of

Information Science and Engineering in Southeast University, Nanjing, China.
Her research interests lie in the area of information theory and communication
theory. She is an associate editor for IEEE Transactions on Communications.

Maged Elkashlan received the PhD degree in Elec-
trical Engineering from the University of British
Columbia in 2006. From 2007 to 2011, he was
with the Commonwealth Scientific and Industrial
Research Organization (CSIRO) Australia. During
this time, he held visiting faculty appointments
at University of New South Wales, University of
Sydney, and University of Technology Sydney. In
2011, he joined the School of Electronic Engineering
and Computer Science at Queen Mary University of
London. He also holds a visiting faculty appointment

at Beijing University of Posts and Telecommunications. His research interests
fall into the broad areas of communication theory and signal processing.

Dr. Elkashlan is an Editor of the IEEE TRANSACTIONS ON VEHICU-
LAR TECHNOLOGY and the IEEE TRANSACTIONS ON MOLECULAR,
BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS. He was an
Editor of the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
from 2013 to 2018 and the IEEE COMMUNICATIONS LETTERS from
2012 to 2016. He received numerous awards, including the 2022 IEEE
Communications Society Leonard G. Abraham Prize, and best paper awards
at the 2014 and 2016 IEEE ICC, 2014 CHINACOM, and 2013 IEEE VTC-
Spring.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3243571

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 13,2023 at 14:24:09 UTC from IEEE Xplore.  Restrictions apply. 


